How to establish universal block-matrix factorizations

نویسندگان

  • Yongge Tian
  • George P. H. Styan
  • GEORGE P. H. STYAN
چکیده

A general method is presented for establishing universal factorization equalities for 2×2 and 4×4 block matrices. As applications, some universal factorization equalities for matrices over four-dimensional algebras are established, in particular, over the Hamiltonian quaternion algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela How to Establish Universal Block - Matrix Factorizations ∗

A general method is presented for establishing universal factorization equalities for 2×2 and 4×4 block matrices. As applications, some universal factorization equalities for matrices over four-dimensional algebras are established, in particular, over the Hamiltonian quaternion algebra.

متن کامل

WZ factorization via Abay-Broyden-Spedicato algorithms

Classes of‎ ‎Abaffy-Broyden-Spedicato (ABS) methods have been introduced for‎ ‎solving linear systems of equations‎. ‎The algorithms are powerful methods for developing matrix‎ ‎factorizations and many fundamental numerical linear algebra processes‎. ‎Here‎, ‎we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW‎ ‎factorizations of a nonsingular matrix as well as...

متن کامل

Block LU factorizations of M-matrices

It is well known that any nonsingular M–matrix admits an LU factorization into M–matrices (with L and U lower and upper triangular respectively) and any singular M–matrix is permutation similar to an M–matrix which admits an LU factorization into M–matrices. Varga and Cai establish necessary and sufficient conditions for a singular M–matrix (without permutation) to allow an LU factorization wit...

متن کامل

Incomplete block factorization preconditioning for linear systems arising in the numerical solution of the Helmholtz equation

The application of the finite difference method to discretize the complex Helmholtz equation on a bounded region in the plane produces a linear system whose coefficient matrix is block tridiagonal and is some (complex) perturbation of an M-matrix. The matrix is also complex symmetric, and its real part is frequently indefinite. Conjugate gradient type methods are available for this kind of line...

متن کامل

Block Algorithms for Orthogonal Symplectic Factorizations

On the basis of a new WY -like representation block algorithms for orthogonal symplectic matrix factorizations are presented. Special emphasis is placed on symplectic QR and URV factorizations. The block variants mainly use level 3 (matrix-matrix) operations that permit data reuse in the higher levels of a memory hierarchy. Timing results show that our new algorithms outperform standard algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017