How to establish universal block-matrix factorizations
نویسندگان
چکیده
A general method is presented for establishing universal factorization equalities for 2×2 and 4×4 block matrices. As applications, some universal factorization equalities for matrices over four-dimensional algebras are established, in particular, over the Hamiltonian quaternion algebra.
منابع مشابه
Ela How to Establish Universal Block - Matrix Factorizations ∗
A general method is presented for establishing universal factorization equalities for 2×2 and 4×4 block matrices. As applications, some universal factorization equalities for matrices over four-dimensional algebras are established, in particular, over the Hamiltonian quaternion algebra.
متن کاملWZ factorization via Abay-Broyden-Spedicato algorithms
Classes of Abaffy-Broyden-Spedicato (ABS) methods have been introduced for solving linear systems of equations. The algorithms are powerful methods for developing matrix factorizations and many fundamental numerical linear algebra processes. Here, we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW factorizations of a nonsingular matrix as well as...
متن کاملBlock LU factorizations of M-matrices
It is well known that any nonsingular M–matrix admits an LU factorization into M–matrices (with L and U lower and upper triangular respectively) and any singular M–matrix is permutation similar to an M–matrix which admits an LU factorization into M–matrices. Varga and Cai establish necessary and sufficient conditions for a singular M–matrix (without permutation) to allow an LU factorization wit...
متن کاملIncomplete block factorization preconditioning for linear systems arising in the numerical solution of the Helmholtz equation
The application of the finite difference method to discretize the complex Helmholtz equation on a bounded region in the plane produces a linear system whose coefficient matrix is block tridiagonal and is some (complex) perturbation of an M-matrix. The matrix is also complex symmetric, and its real part is frequently indefinite. Conjugate gradient type methods are available for this kind of line...
متن کاملBlock Algorithms for Orthogonal Symplectic Factorizations
On the basis of a new WY -like representation block algorithms for orthogonal symplectic matrix factorizations are presented. Special emphasis is placed on symplectic QR and URV factorizations. The block variants mainly use level 3 (matrix-matrix) operations that permit data reuse in the higher levels of a memory hierarchy. Timing results show that our new algorithms outperform standard algorit...
متن کامل